BERNOULLI FLOWS OVER MAPS OF THE INTERVAL

BY M. RATNER'

ABSTRACT

We consider special flows T' built over shift automorphism φ with a Holder function. We introduce two properties for φ (R and WM) s.t. weak-mixing for T' implies K if φ is R and it implies Bernoulliness if φ is WM. We apply this to maps of the interval to show that for the Lorentz Attractor Flow with a natural measure weak-mixing implies Bernoulliness.

We turn to the Rohlin-Sinai theory of continuous partitions (see [14], [15], [7]). Let (X, μ) be a probability space. For partitions ξ , η we denote by $\xi \wedge \eta$ the largest partition s.t. if $x \in A \in \xi \wedge \eta$ then $\xi(x)$, $\eta(x) \subset A$ for a.e. $x \in X$. ξ is called discrete if $\mu(C) > 0$ for some $C \in \xi$. For $C \subset \xi(x)$ we denote $C \times \eta = \bigcup_{y \in C} \eta(y)$.

DEFINITION 1. (1) A pair $\{\xi, \eta\}$ is called discrete (\mathcal{D}) if $\xi \wedge \eta$ is discrete.

- (2) An ordered pair $\{\xi, \eta\}$ is called random (R) at $x \in X$ if for each $C \subset \xi(x)$, $\mu(C \mid \xi(x)) = 1$, we have $\mu(C \times \eta) > 0$.
- (3) An ordered pair $\{\xi, \eta\}$ is called random if there is $R \subset X$, $\mu(R) > 0$ s.t. $\{\xi, \eta\}$ is random at every $x \in R$. R is called a random set for $\{\xi, \eta\}$.
- (4) $\{\xi, \eta\}$ is strongly random (SR) if for a.e. $x \in X$ and every $C \subset \xi(x)$, $\mu(C \mid \xi(x)) > 0$ we have $\mu(C \times \eta) > 0$. (Compare with [16].)

Clearly, $\{\xi, \eta\}$ is R implies $\{\xi, \eta\}$ is \mathcal{D} .

Anosov flows with non-integrable pair of foliations [1], [2] provides us with a pair $\{\eta^s, \eta^u\}$ s.t. $\eta^s \wedge \eta^u = \{X, \emptyset\} \mod_{\mu} 0$ and $\{\eta^s, \eta^u\}$ is not random at any $x \in X$. Let φ be the shift automorphism in a space $X \subset \{1, \dots, r\}^z$ of two-sided sequences $x = \{x_i\}_{i=-\infty}^{\infty}$, $(\varphi x)_i = x_{i-1}$, $\varphi(X) = X$, preserving μ . Let $A_r = \{x_i\}_{i=-\infty}^{\infty}$

^{*} Research partially supported by NSF Grant MCS74-19388.A01 and the Sloan Foundation. Received October 5, 1977

 $\{x \in X : x_0 = r\}, \ \alpha = \{A_1, \dots, A_r\} \text{ and } \alpha_m^n = \bigvee_{k=m}^n \varphi^k \alpha. \text{ Assume without loss of generality that } \mu(A) > 0 \text{ for all } A \in \alpha_m^n, m, n = 0, 1, \dots$

DEFINITION 2. α is called discrete (random, strongly random) if the pair $\{\alpha_{-\infty}^0, \alpha_0^\infty\}$ is discrete (R, SR). An m.p.t. is $\mathcal{D}(R, SR)$ if it has a $\mathcal{D}(R, SR)$ generator.

The following theorem obviously follows from [15] (see also [7] and our discussion below).

THEOREM 1. Let α be discrete. Then either φ is a K-automorphism or φ^m is not ergodic for some $m \neq 0$.

Surely, if α is Bernoulli it is SR. Here is an example of a very weak Bernoulli (VWB) β which is not random at any point (even not discrete).

Let φ be Bernoulli with two-sets generator $\alpha = \{P_1, P_2\}$, $f: X \to R$, $f \mid P_1 = a$, $f \mid P_2 = b$ and a, b be s.t. the special flow T' built with (φ, f) is Bernoulli. Let $B_1 = \bigcup_{0 \le t \le a} T'P_1$, $B_2 = \bigcup_{0 \le t \le b} T'P_2$, $\beta = \{B_1, B_2\}$. β is a VWB generator for $T = T^1$. It is easy to see that

$$\beta_{-\infty}^{0} = \{T'x_{-\infty}^{0}: 0 \le t \le a, x \in P_{1}\} \cup \{T'x_{-\infty}^{0}: 0 \le t \le b, x \in P_{2}\},$$
$$\beta_{0}^{\infty} = \{T'x_{0}^{\infty}: 0 \le t \le a, x \in P_{1}\} \cup \{T'x_{0}^{\infty}: 0 \le t \le b, x \in P_{2}\}.$$

Every atom of $\beta_{-\infty}^0 \wedge \beta_0^{\infty}$ is either $T'P_1$ for some $0 \le t \le a$ or $T'P_2$ for some $0 \le t \le b$. These atoms all have measure 0 in the space of the flow.

QUESTION. Are there K-automorphisms which are not random (discrete)?

We consider the natural metric ρ in X:

$$\rho(x,y) = \sum_{i \in \mathbf{Z}} 2^{-|i|} e(x_i, y_i),$$

$$e(x_i, y_i) = 0 \quad \text{if} \quad x_i = y_i, \qquad e(x_i, y_i) = 1 \quad \text{if} \quad x_i \neq y_i,$$

and call $G \in \mathcal{F}_{\beta}$ on $X, G: X \to R$ if G is μ -integrable and 1/G is Holder continuous of order $\beta > 0$ (we allow G to grow to ∞).

$$\sum_{n=0}^{\infty} n \cdot \sup_{x,y: |x_i-y_i| |i| \leq n} |G(x)-G(y)| < \infty.$$

^{*} Actually our proofs below also work for G with

We say that α is k-random $(k \ge 0)$ if the pair $\{\alpha_{-\infty}^0, \alpha_{-k}^\infty\}$ is random. Clearly, m-R implies n-R if $m \ge n$.

We prove the following theorem.

THEOREM 2. Let T' be the special flow built over $(X, \mu, \varphi, \alpha)$ with $0 < G_0 \le G \in \mathcal{F}_B$. There is k = k(G) depending only on G s.t. if (1) G is bounded and α is k-random or (2) G is any and α is strongly k-random, then either T' is a K-flow or T' is not ergodic for some $s \ne 0$.

So the statement of the theorem holds for all bounded G if α is k-R for all $k \ge 0$ and it holds for all G if α is strongly k-R for all $k \ge 0$.

REMARK. k(G) in the theorem can be estimated from our proofs below. It depends on G_0 , β and the Holder coefficient of G.

Gurevič [7] proved such a theorem when α was discrete and G was constant on atoms of $\alpha_{-\infty}^0 \wedge \alpha_0^\infty$. We use some of his ideas.

The following property has been responsible for Bernoulliness of Anosov systems (see [4], [6], [13]).

DEFINITION 3. α (or φ) is weak Markov (WM) if given $\varepsilon > 0$ there are $N = N(\varepsilon)$, a set $P = P(\varepsilon)$ of atoms of $\alpha_{-\infty}^0$, $\mu(P) > 1 - \varepsilon$ and a set $Q = Q(\varepsilon)$ of atoms of α_{-N}^{∞} , $\mu(Q) > 1 - \varepsilon$ s.t. if $\bar{x}, \bar{y} \in P \cap x_{-N}^0$, $x_{-N}^0 \in \alpha_{-N}^0$ then for any set $A \subset Q$ of atoms of α_{-N}^{∞} we have $\mu(A \mid \bar{x}) > 0$ iff $\mu(A \mid \bar{y}) > 0$ and

$$\left|\frac{\mu\left(A\mid\bar{x}\right)}{\mu\left(A\mid\bar{y}\right)}-1\right|<\varepsilon.$$

We prove

THEOREM 3. Let α be WM. Then α is strongly k-random for all $k \ge 0$.

One can easily see that if φ is a K-automorphism and α is WM then α is a weak Bernoulli partition (see [13]). We get from Theorems 3 and 1, and [13]

THEOREM 4. Let α be WM. Then either φ is Bernoulli or φ^m is not ergodic for some $m \neq 0$.

Using Theorems 2, 3 we apply the Ornstein-Weiss theory [11], [12] to get (see [13])

THEOREM 5. Let T' be the special flow over $(X, \alpha, \varphi, \mu)$ with $0 < G_0 \le G \in \mathcal{F}_{\beta}$. Let α be WM. Then either T' is Bernoulli or T' is not ergodic for some $s \ne 0$.

In the last section of the paper (which can be read independently), we apply our theorems to maps of the interval and semiflows over such maps.

Suppose that $f:[0,1] \rightarrow [0,1]$ is a piecewise C^1 -function, i.e. there is a finite partition $0 = a_0 < a_1 < \cdots < a_r = 1$ so that f is differentiable on each (a_i, a_{i+1}) . If $\lambda = \inf_{0 \le x \le 1} |f'(x)| > 1$ and f is piecewise C^2 , i.e. each $f \mid (a_i, a_{i+1})$ extends to a C^2 -function on $[a_i, a_{i+1}]$, then Lasota and Yorke [9] showed that f possesses a smooth invariant measure μ and the density $d\mu/dx$ of such a μ is of bounded variation on [0,1]. Using their method, S. Wong [18] has obtained the same result for the case when $\varphi(x) = 1/|f'(x)||(a_i, a_{i+1})$ extends to a function of bounded variation on $[a_i, a_{i+1}]$ (in this case we say that φ is of bounded variation (b.v.) on [0,1]). As opposed to the C^2 -extension the last condition allows |f'| to grow to ∞ . This is especially important since such maps f arise as Poincaré maps for semiflows whose inverse image represents by Williams [17] the Lorenz Attractor Flows ([5], [10]). For the C^2 -extension case Rufus Bowen [3] has studied the ergodic properties of (f, μ) . He proved that the natural extension of (f, μ) is Bernoulli whenever (f, μ) is weak-mixing and gave some natural conditions for (f, μ) being weak-mixing.

We show that Rufus' results still hold for the bounded variation case. We just reprove his basic lemma 3 and then prove

THEOREM 6. Let $f: [0,1] \to [0,1]$ be a piecewise C^1 -function, 1/|f'| be of b.v., $\lambda = \inf_{0 \le x \le 1} |f'(x)| > 1$ and μ be a smooth f-invariant probability measure. Then the natural extension of f is WM.

So we get from Theorem 4 and 6

THEOREM 7. Either the natural extension of (f, μ) is Bernoulli or f^m is not ergodic for some $m \neq 0$.

Having Rufus' lemma 3 reproved, we repeat his arguments [3] to get

THEOREM 7'. Let f, μ be as in Theorem 6. Then the natural extension of (f, μ) is Bernoulli if one of the following holds: (a) $\sup_{n>0} \mu(f^nU) = 1$ for all nonempty open intervals U with $\mu(U) > 0$; (b) r = 2 and $\lambda > \sqrt{2}$; (c) $\lambda > 2$ and condition (a) holds for the sets $U = (a_i, a_{i+1})$, $1 \le i \le r - 2$.

The Poincaré map (f, μ) in the Williams' construction [17] satisfies (b). So we get

COROLLARY. The Poincaré map f has only one smooth invariant measure μ (the Wong one [18]) and the natural extension of (f, μ) is Bernoulli (see also Lanford [22] for discussions about f).

We get from Theorems 3 and 5

THEOREM 8. Let f, μ be as in Theorem 6, $0 < F_0 \le F \in \mathcal{F}_{\beta}$ and S' be the semiflow built over (f, μ) with F. Then, either the natural extension of S' is Bernoulli or S^p is not ergodic for some $p \ne 0$.

A continuous flow T' on a metric space X is an inverse image of a semiflow S' on W if there is a continuous surjective map $\psi \colon X \to W$ s.t. (1) if we denote by \mathscr{B} and $\tilde{\mathscr{B}}$ the Borel σ -algebras in W and X respectively then the smallest T'-invariant σ -algebra in X which contains $\psi^{-1}(\mathscr{B})$ is all of $\tilde{\mathscr{B}}$ and (2) $\psi T' = S'\psi$. If S' preserves a measure ν on \mathscr{B} then T' preserves the measure $\tilde{\nu}$ on $\tilde{\mathscr{B}}$, $\tilde{\nu}(\psi^{-1}B) = \nu(B)$, $B \in \mathscr{B}$. This means that T' in $(X, \tilde{\mathscr{B}}, \tilde{\nu})$ is the natural extension of S' in (W, \mathscr{B}, ν) .

The Lorenz Attractor Flows (LAF) are by Williams [17] inverse images of semiflows satisfying the conditions of Theorem 8. Providing LAF with the measure $\tilde{\nu}$, we get

THEOREM 9. The Lorenz Attractor Flow L' with the invariant measure $\tilde{\nu}$ is either Bernoulli or L^m is not ergodic for some $m \neq 0$.

Proving Theorem 2 we show that the belonging $G \in \mathcal{F}_{\beta}$ provides T' with a pair of partitions $\{\eta^s, \eta^u\}$ analogous to stable and unstable foliations of Anosov flows. We show that if the second alternative of Theorem 2 holds, i.e. T^m is not ergodic for some $m \neq 0$, then the pair has a special property similar to integrability (see [1,2]) of foliations for Anosov flows. For the LAF the property can be stated as follows.

Let W^s , W^{ss} , W^{uu} be the stable, strong stable and strong unstable foliations of LAF. Let $W^{ss}_{\epsilon}(x)$ be the ϵ -ball centered at x in a leave of W^{ss} . Let $y \in W^{uu}_{\delta}(x)$. If δ , $\epsilon > 0$ are sufficiently small the following map is defined, $p: W^{ss}_{\epsilon}(x) \to W^{s}_{2\epsilon}(y)$

$$p(z) = W_{2\varepsilon}^{s}(y) \cap W_{2\delta}^{uu}(z), \qquad z \in W_{\varepsilon}^{ss}(x).$$

We say that W^{ss} and W^{uu} are integrable if for any $x, \varepsilon, \delta > 0$ small we have $p(W^{ss}_{\varepsilon}(x)) \subset W^{ss}(y)$.

Apparently, one can prove that, as for Anosov flows, the following alternatives hold for LAF L': either $\{W^{ss}, W^{uu}\}$ are non-integrable or L' is a special flow built with a constant function (suspension). In the first case we have Bernoulliness in Theorem 9 and in the second L^m is not ergodic for some $m \neq 0$. In this last case the spectrum of L' is not continuous.

I express my deep gratitude to Rufus Bowen and Bob Williams for useful conversations.

1. Randomess and K-flows

First let us show how the Rohlin-Sinai theory works. Denote $\xi = \alpha_{-\infty}^0$ and $\eta = \alpha_0^{\infty}$. We have $\varphi^{-1}\xi \leq \xi$, $\eta \leq \varphi^{-1}\eta$ and $\bigvee_{n \in \mathbb{Z}} \varphi^n \xi = \bigvee_{n \in \mathbb{Z}} \varphi^n \eta = \varepsilon$ where ε is the partition into points. Denote $\xi^- = \bigwedge_{n=0}^{\infty} \varphi^{-n}\xi$ and $\eta^+ = \bigwedge_{n=0}^{\infty} \varphi^n \eta$. It follows from [14], [15] that (1) φ is a K-automorphism iff η^+ (or ξ^-) is the trivial partition $N = \{X, \emptyset\}$ mod_{μ}0, (2) since the entropy $h(\varphi) < \infty$, $\eta^+ = \xi^- = \pi(\varphi)$ where $\pi(\varphi)$ is the Pinsker partition invariant under φ .

PROOF OF THEOREM 1. We have $\xi^- \leq \xi$, $\eta^+ \leq \eta$, $\pi(\varphi) = \xi^- \wedge \eta^+ \leq \xi \wedge \eta$. Since $\xi \wedge \eta$ is discrete it has a set of positive measure, therefore $\pi(\varphi)$ does. Since $\pi(\varphi)$ is φ -invariant either $\pi(\varphi) = N$ or some degree of φ is not ergodic.

We are going to prove Theorem 2. Let $G \in \mathcal{F}_{\delta}$ on X, i.e. G is μ -integrable and if $x, y \in x^{n} \in \alpha^{n}$ then

$$\left| \frac{1}{G(x)} - \frac{1}{G(y)} \right| \le H\lambda^{-\delta n}$$
 for some $H > 0$ and $\lambda > 1$.

Denote $\tilde{K}_n = \{x \in X : G(x) > \lambda^{\frac{1}{4}\delta n}\}, K_n = X - \tilde{K}_n$. Since G is μ -integrable $\mu(\tilde{K}_n) < C\lambda^{-\frac{1}{4}\delta n}, C > 0$. So we get

$$|G(x)-G(y)| \le H\lambda^{-\frac{1}{2}\delta n}$$
 for any $x, y \in x_{-n}^n \cap K_n$.

From now on we write $G \in \mathcal{F}_{\beta}$ $(\beta > 0)$ if for every $n = 0, 1, 2, \cdots$ there is $K_n \subset X$, $\mu(K_n) > 1 - L\lambda^{-\beta n}$ $(\lambda > 1)$ and $|G(x) - G(y)| < L\lambda^{-\beta n}$ whenever $x, y \in x_{-n}^n \cap K_n$, L > 0.

Let φ be an m.p.t. in (X, μ) , $f, g \in L'_{\mu}(X)$ and $\int_X f d\mu = \int_X g d\mu$. We shall say that f is homologous to g $(f \sim g)$ relative φ if there is a measurable function u on (X, μ) s.t. a.e. $f(x) = g(x) + u(x) - u(\varphi^{-1}x)$. (See [8], [13].) Gurevič [8] proved the following lemma.

LEMMA 1. If $f \sim g$, then the special flows (φ, f) and (φ, g) constructed over (X, μ) with f and g are isomorphic.

We prove a generalized version of a lemma in [13].

LEMMA 2. Let φ be the shift automorphism on $X \subset \{1, \dots, r\}^z$ preserving μ . Let $0 < G_0 \le G \in \mathcal{F}_{\beta}$ on (X, μ) . Then there is $g: X \to R^+$ s.t. (1) $g \ge g_0 > 0$, (2) $g \in \mathcal{F}_{\gamma}$, $\gamma > 0$, (3) $g \sim G$, (4) g is constant on the elements of α_0^{∞} .

(We need (2) for Bernoulliness in paragraph 2 below.)

PROOF. Let $H_n = \bigcap_{i=n}^{\infty} K_i$ (see the definition of $G \in \mathcal{F}_{\beta}$). Then $H_n \subset H_{n+1} \subset$

 \cdots , $n = 1, 2, \cdots$, $\mu(H_n) > 1 - L_1 \lambda^{-\beta_1 n}$, $\beta_1 > 0$ and $X = \bigcup_{n=1} H_n \pmod{\mu}$. Let $H_n^1 = \{x \in X : \mu(x_{-n}^n \cap H_n) > 0\}$. Then $\mu(H_n^1) > 1 - L_1 \lambda^{-\beta_1 n}$ and for $\tilde{H}_n = \bigcap_{m=n}^{\infty} H_m^1$ we have $\tilde{H}_n \subset \tilde{H}_{n+1} \subset \cdots$, $\mu(\tilde{H}_n) > 1 - L_2 \lambda^{-n\delta}$, $\delta > 0$ and $X = \bigcup_{n=1}^{\infty} \tilde{H}_n$ (mod μ). So for a.e. $x \in X$ there is n(x) s.t. $x \in \tilde{H}_n$, $n \ge n(x)$ and $x \not\in \tilde{H}_n$, n < n(x), $n = 1, 2, \cdots$. Let $\Delta_n(x) = x_{-n}^n \cap H_n$. Define

$$G_n(x) = G_0 if n < n(x),$$

$$G_n(x) = \int_{\Delta_n(x)} G(x) \mu_{\Delta_n}(x)$$
 if $n \ge n(x)$,

where the integration is performed with respect to the conditional measure $\mu \mid \Delta_n$. The functions G_n are constant on the atoms of α_{-n}^n and $G_n(x) \ge G_0 > 0$. Set $h_n(x) = G_n(x) - G_{n-1}(x)$. Then $h_k(x) = G_0$, k < n(x), $h_{n(x)}(x) = G_{n(x)}(x) - G_0 \ge 0$ and $|h_n(x)| \le 2L\lambda^{-\beta(n-1)}$. Let m be s.t. $2L\sum_{n=m}^{\infty} \lambda^{-\beta(n-1)} < G_0/2$. We have

(1)
$$G(x) = G_m(x) + \sum_{i=m+1}^{\infty} h_i(x).$$

The series in (1) converges a.e. Each h_i is constant on the atoms of α_{-i}^i and the function $\varphi^i h_i(x) = h_i(\varphi^{-1}x)$ is constant on the atoms of α_0^{2i} . Consider the series

(2)
$$g^{i}(x) = G_{m}(x) + \sum_{i=m+1}^{\infty} \varphi^{i} h_{i}(x).$$

Let $\mathfrak{D}_n = \bigcap_{i=u}^\infty \varphi^i \tilde{H}_i$. Then $\mathfrak{D}_n \subset \mathfrak{D}_{n+1} \subset \cdots$, $\mu(\mathfrak{D}_n) > 1 - L_3 \lambda^{-\delta_i n}$, $\delta_1 > 0$ and $X = \bigcup_{n=1}^\infty \mathfrak{D}_n \pmod{\mu}$. So for a.e. $x \in X$ there is d = d(x) > 0 s.t. $x \in \mathfrak{D}_n$, $n \ge d$ or $\varphi^{-i}x \in \tilde{H}_i$, $i \ge d$ and $|\varphi^i h_i(x)| \le 2L\lambda^{-\beta(n-1)}$, i > d. It follows that the series in (2) converges a.e. and by our choice of $m, g'(x) \ge G_0/2 = g_0 > 0$. g' is constant on the atoms of α_{-m}^∞ . Show that $g' \in \mathscr{F}_{\gamma}$ for some $\gamma > 0$. Let $y, z \in x_{-n}^n \cap \mathfrak{D}_{n/2}$, $n \ge m$. Since $\varphi^i h_i$ is constant on the atoms of α_0^{2i} , $\varphi^i h_i(y) = \varphi^i h_i(z)$ for $i \le n/2$ and $|\varphi^i h_i(y)|$, $|\varphi^i h_i(z)| \le 2L\lambda^{-\beta(i-1)}$, i > n/2. We have

$$|g'(y) - g'(z)| = \left| \sum_{i=\lfloor n/2 \rfloor+1}^{\infty} (\varphi^{i} h_{i}(y) - \varphi^{i} h_{i}(z)) \right| \leq 4L \sum_{i=\lfloor n/2 \rfloor}^{\infty} \lambda^{-\beta(i-1)}.$$

This says that $g' \in \mathcal{F}_{\gamma}$, $\gamma > 0$.

Consider the series

(3)
$$u(x) = \sum_{i=m+1}^{\infty} \sum_{k=0}^{i-1} \varphi^k h_i(x).$$

Let $E_i = \bigcap_{k=0}^{i-1} \varphi^k \tilde{H}_i$, $\mu(E_i) > 1 - L_2 i \lambda^{-\delta i}$. Let $B_n = \bigcap_{j=n}^{\infty} E_j$, $B_n \subset B_{n+1} \subset \cdots$,

 $\mu(B_n) > 1 - L_2 \sum_{i=n}^{\infty} i \lambda^{-i\delta}$ and $X = \bigcup_{n=1}^{\infty} B_n \pmod{\mu}$. So for a.e. $x \in X$ there is b = b(x) s.t. $x \in E_j$, $j \ge b$ or $|\varphi^k h_j(x)| \le 2L_2 \lambda^{-\delta(j-1)}$, $k = 0, \dots, j-1$, $j \ge b$. So the series in (3) converges a.e. It is readily seen that $G(x) = g'(x) + u(x) - \varphi u(x)$ a.e. and so $G \sim g'$. Then the function $g = \varphi^m g'$ is in \mathscr{F}_{γ} , constant on atoms of α_0^{∞} , $g \ge g_0 > 0$ and $g \sim g' \sim G$.

REMARKS. (1) In the same way we may construct such g constant on atoms of $\alpha_{-\infty}^0$.

(2) It is easy to see from the proof that the function $u \in \mathcal{F}_{\gamma'}$, for some $\gamma' > 0$.

Lemma 2 says that we may assume G constant on atoms of $\alpha_{-\infty}^0$. The flow T' acts in the space $W = \{(x,y) \colon x \in X, \ 0 \le y \le G(x), \ (x,G(x)) = (\varphi x,0)\}$ and preserves the measure $\nu \colon d\nu = d\mu \times dt/\bar{G}$, where $\bar{G} = \int_X Gd\mu$. The fact $G \in \mathcal{F}_\beta$ provides W with a pair of partitions analogous to stable and unstable foliations for Anosov flows. To see this let us explore the geometric meaning of the function u in the proof of Lemma 2. $G(x) = g(x) + u(x) - \varphi u(x)$ and g is constant on α_0^∞ . We assume for simplicity that the sets K_n in the definition of $G \in \mathcal{F}_\beta$ are sets of atoms of α_{-n}^n . It follows from the construction of u that there are sets E_n of atoms of α_{-n}^∞ , $n = 0, 1, \dots$, s.t. $\mu(E_n) > 1 - M\lambda^{-\gamma n}$, $|u(\varphi^{-k}x) - u(\varphi^{-k}y)| < M\lambda^{-\gamma k}$ for all $k \ge n$, $x, y \in x_{-n}^\infty \in E_n$, M > 0 and $\varphi^{-k}E_n \subset E_{n+k}$, $k \ge 0$. Let $n(x) = \min\{n \colon x \in x_{-n}^\infty \in E_n\}$ and let ξ be the partition of X into sets $\xi(x) = x_{-n(x)}^\infty$. We have $\varphi^{-1}\xi \ge \xi$. Let $\xi_n = \xi \vee \alpha_{-n}^\infty$. Denote $V(x) = \{(z, u(z)), z \in \xi_k(x)\}$. If k is sufficiently large then for every $x \in X$ there is s = s(x) > 0 s.t.

$$V_s = T^s V(x) \subset \{(z, y) \colon z \in \xi_k(x)\}.$$

For $w = (x, y) \in W$ define

$$\eta^{u}(w) = \begin{cases} T^{-u(\varphi x)-G(x)+y}V(\varphi x) & G(x) \geq y > u(x)+s(x), \\ T^{y}V(x) & 0 \leq y \leq u(x)+s(x). \end{cases}$$

Since $G(x) - u(\varphi x) + u(x)$ is constant on atoms of ξ_k the partition η^u is well-defined and $T'\eta^u \ge \eta^u$, $t \le 0$ and $\forall_i T \eta^u = \varepsilon$. η^u is analogous to unstable foliations of Anosov flows. One can see that if $y, z \in \eta^u(w)$ then $d(T'y, T'z) \to 0$, $t \to -\infty$ where d is the natural metric in $W \subset X \times R$.

Let us define a stable partition η^s . G is constant on $\alpha^0_{-\infty}$. For $w = (x, y) \in W$, $0 \le y < G(x)$ define $\eta^s(w) = T^y x^0_{-\infty}$. Then $T^t \eta^s \ge \eta^s$, $t \ge 0$, $\forall_i T \eta^s = \varepsilon$ and $d(T^t y, T^t z) \to 0$, $t \to \infty$, $y, z \in \eta^s(w)$.

REMARK. We have already made the first step in choosing the k(G) in Theorem 2. It should be so large that we could have the set V_s as above.

LEMMA 3. Let (1) G be bounded and $\{\alpha_{-\infty}^0, \alpha_{-k}^{\infty}\}\$ be R or (2) G be anything and $\{\alpha_{-\infty}^0, \alpha_{-k}^{\infty}\}\$ be SR. Then if k is sufficiently large $\{\alpha_{-\infty}^0, \xi_k\}$ is random.

PROOF. (1) If G is bounded there is $k_0 > 0$ s.t. $\xi(x) \in \alpha_{-l}^{\infty}$ for some $l \le k_0$, $x \in X$. Therefore if $k \ge k_0$, a random set for $\{\alpha_{-\infty}^0, \xi_k\}$ is that of $\{\alpha_{-\infty}^0, \alpha_{-k_0}^{\infty}\}$. (2) We have $\xi_k = \xi \vee \alpha_{-k}^{\infty}$. Let $A = \{x \in X : \xi_k(x) \in \alpha_{-k}^{\infty}\}$. By the construction of ξ , $\mu(A) > 1 - M\lambda^{-\gamma k}$. Let k be s.t. $1 - M\lambda^{-\gamma k} > 0$ and $R = \{x \in A : \mu(A \mid x_{-\infty}^0) > 0\}$, $\mu(R) > 0$. Let $C = A \cap x_{-\infty}^0$, $x \in R$. By SR, $\mu(C \times \xi_k) = \mu(C \times \alpha_{-k}^{\infty}) > 0$. So R is a random set for $\{\alpha_{-\infty}^0, \xi_k\}$.

Remark. We made our second choice of k(G) in the lemma.

PROOF OF THEOREM 2. Denote $\eta_{+}^{u} = \bigwedge_{i \geq 0} T^{i} \eta^{u}$, $\eta_{-}^{s} = \bigwedge_{i \leq 0} T^{i} \eta^{s}$. $\eta_{+}^{u} = \eta_{-}^{s} = \pi(T^{i}) = \pi$ where π is the Pinsker partition invariant under T^{i} (see [7], [15], [16]), $\pi \leq \eta^{s} \wedge \eta^{u}$.

We should prove that either $\pi = N$ (trivial) or T^b is not ergodic for some $b \neq 0$.

Working with continuous partitions we should be careful with sets of measure 0, i.e. our arguments should not depend upon any changes by such sets.

Denote $I_1 = \{ w \in W : \text{there is } C \in \eta^s \land \eta^u \text{ s.t. } w \in C \text{ and } \eta^u(w), \eta^s(w) \subset C \}, \nu(I_1) = 1.$

 $\pi \leq \eta^s \wedge \eta^u$ means that there is $I_2 \subset W$, $\nu(I_2) = 1$ s.t. if $w \in I_2$ then there are $C(w) \in \eta^s \wedge \eta^u$ and $C_{\pi}(w) \in \pi$ s.t. $w \in C(w)$ and $C(w) \subset C_{\pi}(w)$.

 π is invariant under T' means that there is $I_3 \subset W$, $\nu(I_3) = 1$ s.t. if $w \in I_3$ then $w \in C_{\pi}$ for some $C_{\pi} \in \pi$, $T'w \in C'_{\pi}$ for some $C'_{\pi} \in \pi$, $t \in R$ and $C'_{\pi} = T'C_{\pi}$ for all $t \in R$.

Let $I_4 = I_1 \cap I_2 \cap I_3$, $\nu(I_4) = 1$, $I = \{ w \in I_4 : \nu(I_1 \mid \eta^s(w)) = 1 \}$, $\nu(I) = 1$ and $\tilde{\eta}^s(w) = \eta^s(w) \cap I_1$.

If $w \in I$ then (1) $\eta^s(w)$, $\eta^u(w) \subset C(w) \subset C_\pi(w)$ for some $C = C(w) \in \eta^s \wedge \eta^u$, $C_\pi = C_\pi(w) \in \pi$, (2) $T'w \in C'_\pi = T'C_\pi \in \pi$, $t \in R$, (3) for any $v \in \tilde{\eta}^s(w), \eta^u(v) \subset C(w)$ and therefore $\tilde{\eta}^s(w) \times \eta^u \subset C(w) \subset C_\pi(w)$, (4) $\tilde{\eta}^s(w) \times \eta^u \subset I_3$.

We are given that the pair $\{\alpha_{-\infty}^0, \alpha_{-k}^\infty\}$, k = K(G) is R or SR in (1) or (2) of the Theorem. By Lemma 3 the pair $\{\alpha_{-\infty}^0, \xi_k\}$ is R (R also denotes a random set for the pair, $\mu(R) > 0$).

Denote $\theta = \bigcup_{t=p}^{q} T^{t}R$ where $0 are such that <math>\theta \subset \{(u, v) \in W : u \in R\}$. Divide θ into sets $\{l(z) = \bigcup_{t=p}^{q} T^{t}z, z \in R\}$. Since $\nu(I) = 1$ and $\nu(\theta) > 0$ there is $l = l(\tilde{z}), \ \tilde{z} \in R$ s.t. the Lebesgue measure $\lambda(I/l) = 1$. Let $Q = I \cap l$ and $B = \bigcup_{w \in Q} \tilde{\eta}^s(w) \times \eta^u$. $B \subset I_3$ by (4) above. The projection of $\tilde{\eta}^s(w) \times \eta^u$, $w \in Q$ on X has a form $A \times \xi_k$ for some $A = A(w) \subset \tilde{z}^0_{-\infty}$, $\mu(A/\tilde{z}^0_{-\infty}) = 1$. Since $\tilde{z} \in R$, $\mu(A \times \xi_k) > 0$ and therefore $\nu(B) > 0$.

Suppose that T' is ergodic and $\pi > N$. Then there is a set D of atoms of π s.t. $0 < \nu(D) < 1$. (It is clear when we consider D as a set of atoms of π and when as a subset of W.) Since $\nu(B) > 0$ we may take the D s.t. $\nu(B \cap D) > 0$. Let $\bar{D} = \{C_{\pi} \in D : \nu(B/C_{\pi}) > 0\}, 0 < \nu(\bar{D}) \le \nu(D) < 1$.

Let C'_{π} , $C''_{\pi} \in \bar{D}$ and $x' \in C'_{\pi} \cap B$, $x'' \in C''_{\pi} \cap B$. We have $x' \in \tilde{\eta}^{s}(w') \times \eta^{u} \subset C'_{\pi}$, $x'' \in \tilde{\eta}^{s}(w'') \times \eta^{u} \subset C''_{\pi}$, w', $w'' \in Q$ and $w'' = T^{a}w'$ for some $a : |a| \le q - p$. Since w', $w'' \in I$, $C''_{\pi} = T^{a}C'_{\pi}$. Such a number a exists for any two atoms of \bar{D} .

Since T' is ergodic and $\nu(B\cap \bar{D})>0$ there is r>q-p>0 s.t. $\nu(T'(B\cap \bar{D})\cap (B\cap \bar{D}))>0$. Let $x\in T'(B\cap \bar{D})\cap (B\cap \bar{D})$, $x\in C'_{\pi}\in \bar{D}$ and $T^{-r}x\in C''_{\pi}\in \bar{D}$. Since $x\in B\subset I_3$ we have $C'_{\pi}=T'C''_{\pi}$. Let $|a|\leq q-p$ be s.t. $C''_{\pi}=T^aC'_{\pi}$ and b=a+r>0. Then $T^bC'_{\pi}=C'_{\pi}$. Since such an a exists for any two atoms of \bar{D} we get $T^bC_{\pi}=C_{\pi}$ for every $C_{\pi}\in \bar{D}$. So $T^b\bar{D}=\bar{D}$. Since $0<\nu(\bar{D})<1$ this implies that T^b is not ergodic.

Let

$$w' \in \eta^{s}(w) \times \eta^{u}, \qquad w' = (x, y),$$

$$Q(w') = \{(u, v) \in W : u \in x^{0}_{-\infty}\}, \qquad \zeta(w, w') = Q(w') \cap (\eta^{s}(w) \times \eta^{u}).$$

DEFINITION. The pair $\{\eta^s, \eta^u\}$ is called integrable if $\zeta(w, w') \subset \eta^s(w')$ for a.e. $w, w' \in W$.

PROPOSITION. If T^b is not ergodic for some $b \neq 0$, then $\{\eta^s, \eta^u\}$ is integrable.

PROOF. If T^b is not ergodic for some $b \neq 0$ then there is an eigenfunction

(4)
$$f(T'w) = e^{i\lambda t} f(w) \qquad \text{a.e.}$$

for all t, $\lambda \neq 0$. One can see from the proof of Theorem 2 that f is constant on atoms of η^s and of η^u . Therefore f is constant on $\eta^s(w) \times \eta^u$ and on $\zeta(w, w')$. But (4) shows then that $\zeta(w, w') \subset \eta^s(w') \mod_{\nu} 0$.

2. WM and Bernoulliness

PROOF OF THEOREM 3. We have to prove that for a.e. $x \in X$, all $p \ge 0$, all $F \subset x_{-\infty}^0$, $\mu(F \mid x_{-\infty}^0) > 0$ we have $\mu(F \times \alpha_{-p}^\infty) > 0$.

Let $\varepsilon_n = 2^{-n}$ and P_n , Q_n , N_n be as in the definition of WM. So $\mu(P_n)$, $\mu(Q_n) > 1 - 2^{-n}$ and for \bar{x} , $\bar{y} \in \alpha_n^0 \cap P_n$, $A \subset Q_n$, $\mu(A \mid \bar{x}) > 0$ iff $\mu(A \mid \bar{y}) > 0$, $\bar{x} = x_{-\infty}^0$.

Denote

$$A_{k} = \{x \in X : \mu(Q_{k} \mid \bar{x}) > 1 - 2^{-k/2}\},$$

$$B_{k} = \{x \in X : \mu(x_{-N_{k}}^{0} \cap P_{k}) > 0\},$$

$$C_{k} = \{x \in X : \bar{x} \in P_{k}\}.$$

We have $\mu(A_k) > 1 - 2^{-k/2}$, $\mu(B_k)$, $\mu(C_k) > 1 - 2^{-k}$. Let

$$\tilde{A}_n = \bigcap_{k=n}^{\infty} A_k, \qquad \tilde{B}_n = \bigcap_{k=n}^{\infty} B_k, \qquad \tilde{C}_n = \bigcap_{k=n}^{\infty} C_k.$$

Then $\mu(\tilde{A}_n) > 1 - 2^{-n/4}$, $\mu(\tilde{B}_n)$, $\mu(\tilde{C}_n) > 1 - 2^{-(n-2)}$. Let

$$A = \bigcup_{n \geq 0} \tilde{A}_n, \qquad B = \bigcup_{n \geq 0} \tilde{B}_n, \qquad C = \bigcup_{n \geq 0} \tilde{C}_n,$$

 $\mu(A \cap B \cap C) = 1$ and if $x \in A \cap B \cap C$ then there is q(x) > 0 s.t. $x \in A_k \cap B_k \cap C_k$ for all $k \ge q(x)$. So if $k \ge q(x)$ then

$$\mu(x_{-N_k}^0 \cap P_k) > 0, \quad \bar{x} \in P_k \quad \text{and} \quad \mu(Q_k \mid \bar{x}) > 1 - 2^{-k/2}.$$

Let $p \ge 0$ be fixed, $x \in A \cap B \cap C$ and $F \subset \bar{x}$, $\mu(F \mid \bar{x}) > 0$. Let $k \ge q(x)$ be s.t. $N_k \ge p$ and $\mu(F \cap Q_k \mid \bar{x}) > 0$. Denote $E = F \cap Q_k$ and $E' = E \times \alpha_{-N_k}^{\infty}$. Let $\mathcal{D} = P_k \cap \chi_{-N_k}^0$, $\mu(\mathcal{D}) > 0$. If $\bar{y} \in \mathcal{D}$ then by WM $\mu(E' \mid \bar{y}) > 0$ and we have

$$\mu(E') = \int_{\tilde{y} \subset x_{N_h}^0} \mu(E' | \tilde{y}) d\mu \ge \int_{\tilde{y} \in \mathcal{D}} \mu(E' | \tilde{y}) d\mu > 0.$$

PROOF OF THEOREM 5. In view of Theorems 2 and 3 it is enough to show that if T' is a K-flow then T' is Bernoulli. To get it we just modify slightly the proof of theorem 3.1 in [13].

Instead of T' built over $(X, \alpha, \mu, \varphi)$ with $G \in \mathcal{F}_{\beta}$ we consider the flow \tilde{T}' built with $g \in \mathcal{F}_{\gamma}$ from Lemma 2. By Lemma 1, T' and \tilde{T}' are isomorphic. Let $t_0 > 0$ and $T = \tilde{T}'^0$. We show that T is Bernoulli. Let K_n be as in the definition of $g \in \mathcal{F}_{\gamma}$ and $L_n = \bigcap_{i=n}^{\infty} \varphi^{-i} K_i$, $\tilde{L}_n = X - L_n$, $\mu(\tilde{L}_n) < \lambda^{-\gamma_1 n}$, $\gamma_1 > 0$ for big n. Since g is μ -integrable given $\varepsilon > 0$ there is $\delta > 0$ s.t. $\int_A g d\mu < \varepsilon$ whenever $\mu(A) < \delta$. If now n is s.t. $\lambda^{-\gamma_1 n} < \delta$ then we have $\nu(V_n) < \varepsilon$ where $V_n = \{(x, y) \in W : x \in \tilde{L}_n\}$. This enables us to repeat arguments in [13] by noting that lemma 3.3 in [13] is now true outside an additional set of small ν -measure. \square

3. Maps of the interval and semiflows

Henceforth f is a piecewise C^1 -map of [0, 1] = I, $\lambda = \inf |f'(x)| > 1$, $\varphi(x) = 1 ||f'(x)||$ is of bounded variation on I and μ is a smooth f-invariant measure on I. By Wong's theorem the density $p(x) = d\mu(x)/dx$ is of bounded variation on I.

 \mathcal{P} will always denote the partition $\mathcal{P} = \{(0, a), \dots, (a_{r-1}, 1)\}$ into intervals of continuity of f. One can see that $\bigvee_{n=0}^{k} f^{-n} \mathcal{P}$ is a partition into intervals of length $\leq \lambda^{-k}$.

The following lemma is proved in Bowen's paper [3].

LEMMA 3.1. If $A \in \bigvee_{n=0}^k f^{-n}\mathcal{P}$, $A \neq \emptyset$, and $\bar{A} \cap \{a_0, \dots, a_r\} = \emptyset$ then $fA \in \bigvee_{n=0}^{k-1} f^{-n}\mathcal{P}$.

LEMMA 3.2. There is a constant L > 0 s.t. given $\varepsilon > 0$ if $N > L \log(1/\varepsilon)$ then there is a collection of atoms $\alpha_N \subset \bigvee_{n=0}^N f^{-n} \mathcal{P}$ so that $\mu(\cup \alpha_N) > 1 - \varepsilon$ and for any $x, y \in A \in \alpha_N$ we have

$$\frac{p(x)}{p(y)} \in [e^{-\epsilon}, e^{\epsilon}] \quad and \quad \frac{\varphi(x)}{\varphi(y)} \in [e^{-\epsilon}, e^{\epsilon}].$$

For the function p the lemma is proved in Bowen's paper. Following his way we'll demonstrate the proof for φ .

PROOF. Since f maps I into itself $\int_I |f'(x)| dx < \infty$ and since the density p is bounded $C_1 = \int_I |f'(x)| d\mu(x) < \infty$. This implies that for any l > 0

(3.1)
$$\mu \left\{ x \in I : |f'(x)| > \frac{1}{l} \right\} = \mu \left\{ x \in I : \varphi(x) < l \right\} < C_1 l.$$

Consider the following exhaustive list of possibilities for an atom $A \in V_{n=0}^N f^{-n} \mathcal{P}$ and $\delta > 0$.

- (1) $\varphi(x) \ge \delta/2$ for all $x \in A$ and $\varphi(y) > e^{\delta}\varphi(z)$ for some $y, z \in A$.
- (2) $\varphi(x) \le \delta/2$ and $\varphi(y) \ge 3\delta/4$ for some $x, y \in A$.
- (3) $\varphi(x) \le 3\delta/4$ for all $x \in A$.
- (4) $\varphi(x) \ge \delta/2$ for all $x \in A$ and $\varphi(y) \le e^{\delta} \varphi(z)$ for all $y, z \in A$.

Let K be the total variation of $\varphi(x)$ on I. The variation of $\varphi(x)$ over an A satisfying (1) or (2) is at least $\gamma = \min\{(e^{\delta} - 1)\delta/2, \delta/4\} > \delta^2/4$. The total number of such atoms A is at most $K\gamma^{-1}$ and the total μ -measure of such atoms is at most $K \cdot \gamma^{-1}\lambda^{-N} \|p\|_{\infty} < 4K \|p\|_{\infty} \delta^{-2}\lambda^{-N}$. The total μ -measure of all atoms satisfying (3) is at most $C_{12}^{3}\delta$ by (3.1). So if we denote by α_N the collection of all the atoms satisfying (4) then the total μ -measure of the atoms which $\not\in \alpha_N$ is at most $C_2(\delta^{-2}\lambda^{-N} + 3\delta/4)$ where $C_2 = \max\{4K \|p\|_{\infty}, C_1\}$. If $\lambda^{-N} < \delta^3/8$ or $N > L \log(1/\delta)$ for some L > 0 then the last μ -measure is at most $C_2\delta$. We complete the proof taking $\delta = \min\{\varepsilon, \varepsilon/C_2\}$.

Picking $\varepsilon = 2^{-\sqrt{N}}$ in Lemma 3.2 we get the following

COROLLARY 1. There is $N_0 > 0$ s.t. if $N > N_0$ then there is a collection of atoms $\alpha_N \subset \bigvee_{n=0}^N f^{-n} \mathcal{P}$ s.t. $\mu(\cup \alpha_N) > 1 - 2^{-\vee N}$ and for any $x, y \in A \in \alpha_N$ we have

$$\left|\frac{p(x)}{p(y)} - 1\right| < 4^{-\sqrt{N}} \quad and \quad \left|\frac{\varphi(x)}{\varphi(y)} - 1\right| < 4^{-\sqrt{N}}.$$

We denote $\tilde{a}_N = \{A \in \bigvee_{n=0}^N f^{-n} \mathcal{P} : A \not\in \alpha_N \}$. So $\mu(\bigcup \tilde{\alpha}_N) < 2^{-\vee N}$.

LEMMA 3.3 (basic). Given $\varepsilon > 0$, there is an $M = M(\varepsilon)$ so that for each $m \ge 0$ one can find a collection of atoms $\beta = \beta_{m+M} \subset \bigvee_{0}^{m+M} f^{-n} \mathcal{P}$ with

(1)
$$f^m B \in \bigvee_{n=0}^M f^{-n} \mathcal{P} \text{ for } B \in \beta$$
,

(2)
$$\mu(\cup\beta) > 1 - \varepsilon$$
,

$$(3) \left| \frac{\mu(f^{m}\tilde{B})}{\mu(f^{m}B)} - \frac{\mu(\tilde{B})}{\mu(B)} \right| < \varepsilon \frac{\mu(\tilde{B})}{\mu(B)}$$

for any measurable $\tilde{B} \subset B \in \beta$, $\mu(B) > 0$.

PROOF. Using Lemma 3.1, R. Bowen showed that the set $\tilde{\beta}$ of those $B \in \bigvee_{n=0}^{m+M} f^{-n} \mathcal{P}$ for which (1) does not hold has total μ -measure at most $\mathfrak{D}\lambda^{-M}$ for some $\mathfrak{D} > 0$. Take $M > N_0$ and the collections $\tilde{\alpha}_N$ (see Corollary 1) for $N = M, M+1, \cdots, M+m$. Denote

$$\tilde{\beta}_k = f^{-m+k} \tilde{\alpha}_{M+k}, \qquad k = 0, 1, \dots, m.$$

Each atom of $\tilde{\beta}_k$ is composed with some atoms of $\bigvee_{n=0}^{M+m} f^{-n}\mathcal{P}$. Since μ is f-invariant we get from Corollary 1 that the total μ -measure of atoms in all the $\tilde{\beta}_k$, $k=0,1,\cdots,m$ is at most $\sum_{k=M}^{\infty} 2^{-\vee k}$. Denoting $\beta=\{B\in\bigvee_{n=0}^{M+m} f^{-n}\mathcal{P}\colon B\not\in\tilde{\beta}$ and $B\not\in\tilde{\beta}_k$, $k=0,1,\cdots,m\}$ and picking $M>N_0$ so large that $\max\{\mathcal{D}\lambda^{-M},\sum_{k=M}^{\infty} 2^{-\vee k}\}<\varepsilon/2$ we get $\mu(\cup\beta)>1-\varepsilon$ and (1) holds for the β . So if $B\in\beta$ then $f^mB\in\bigvee_{n=0}^{M} f^{-n}\mathcal{P}$ and $f^m\mid_B$ is one-to-one. In addition, if $B\in\beta$, then $B\not\in\tilde{\beta}_k$, $k=0,1,\cdots,m$ and therefore $f^kB\subset A\in\alpha_{M+m-k}$. Then by (3.2)

$$\left|\frac{\varphi(f^kx)}{\varphi(f^ky)} - 1\right| < 4^{-\sqrt{M+m-k}}, \qquad \left|\frac{p(f^kx)}{p(f^ky)} - 1\right| < 4^{-\sqrt{M+m-k}}$$

for all $k = 0, 1, \dots, m$ and any $x, y \in B \in \beta$. We have for $\tilde{B} \subset B \in \beta$

$$\mu(f^{m}\tilde{B}) = \int_{f^{m}\tilde{B}} p(y)dy = \int_{\tilde{B}} p(f^{m}x)|(f^{m})'(x)|dx$$
$$= \int_{\tilde{B}} \frac{p(f^{m}x)|(f^{m})'(x)|}{p(x)} p(x)dx = \int_{\tilde{B}} q(x)p(x)dx$$

where

$$\frac{q(x)}{q(y)} = \frac{p(f^m x)}{p(f^m y)} \cdot \frac{p(y)}{p(x)} \cdot \frac{|(f^m)'(x)|}{|(f^m)'(y)|} = \frac{p(f^m x)}{p(f^m y)} \cdot \frac{p(y)}{p(x)} \prod_{k=1}^m \frac{\varphi(f^k y)}{\varphi(f^k x)}.$$

Since the product $\prod_{n=1}^{\infty} (1 \pm 4^{-\sqrt{n}})$ converges and therefore

$$\lim_{M\to\infty}\prod_{k=0}^{\infty}\left(1\pm4^{-\sqrt{M+k}}\right)=1$$

we get from (3.3) that if $B \in \beta$ and $x, y \in B$ then

$$\left| \frac{q(x)}{q(y)} - 1 \right| < \varepsilon$$
 or $|q(x) - q(y)| < \varepsilon q(y)$

for sufficiently large M. Fixing $y \in B \in \beta$ we get

$$\frac{\mu(f^{m}\tilde{B})}{\mu(f^{m}B)} = \frac{\int_{\tilde{B}} q(x)p(x)dx}{\int_{B} q(x)p(x)dx}$$

$$< \frac{q(y)\int_{\tilde{B}} p(x)dx + \varepsilon q(y)\int_{\tilde{B}} p(x)dx}{q(y)\int_{B} p(x)dx - \varepsilon q(y)\int_{B} p(x)dx}$$

$$= \frac{\mu(\tilde{B})}{\mu(B)} \frac{1+\varepsilon}{1-\varepsilon}.$$

Similarly

$$\frac{\mu(f^{m}\tilde{B})}{\mu(f^{m}B)} > \frac{\mu(\tilde{B})}{\mu(B)} \frac{1-\varepsilon}{1+\varepsilon}.$$

Obviously, these imply condition (3) of the lemma.

REMARKS. From now we denote $\mathcal{P}_M = \bigvee_{n=0}^M f^{-n} \mathcal{P}$.

- (1) One can see from the proof of Lemma 3.3 that if $B \in \beta_{M+m}$ then $f^k B \in \beta_{M+m-k}$ for all $0 \le k \le m$, $m \ge 0$.
 - (2) Assertion (3) of the lemma can be rewritten as

(3.4)
$$\left|\frac{\mu(\tilde{B})}{\mu(f^{m}\tilde{B})} - \frac{\mu(V)}{\mu(f^{m}B)}\right| < \varepsilon \frac{\mu(\tilde{B})}{\mu(f^{m}\tilde{B})}.$$

(3) Let $B \in \beta_{M+m}$, $A \subset B$ and $A \in \mathcal{P}_{M+m+k}$, $m, k \ge 0$. It follows from (3.4) that

$$\left|\frac{\mu(A)}{\mu(f^{-m}f^{m}A)} - \frac{\mu(B)}{\mu(f^{-m}f^{m}B)}\right| < \varepsilon \frac{\mu(A)}{\mu(f^{-m}f^{m}A)}$$

since μ is f-invariant.

(4) Let C_m be the collection of atoms $C \in \mathcal{P}_M$ so that at least $1 - \sqrt{\varepsilon}$ (in terms of μ -measure) of the atoms $B \in \mathcal{P}_{M+m}$ with $f^m B \subset C$ satisfy $B \in \beta_{M+m}$. Then $\mu(\cup C_m) \ge 1 - \sqrt{\varepsilon}$. Let $C(\varepsilon) = \{C \in \mathcal{P}_M : C \in C_m \text{ for infinitely many } m \ge 0\}$. Since $\mu(\cup C_m) \ge 1 - \sqrt{\varepsilon}$ for all m we have $\mu(\cup C(\varepsilon)) \ge 1 - \sqrt{\varepsilon}$. It follows from Remark (1) that actually if $C \in C_m$ then $C \in C_k$ for all $0 \le k \le m$ and therefore $C(\varepsilon) = \{C \in \mathcal{P}(M) : C \in C_m \text{ for all } m \ge 0\}$.

Taking $M = M(\varepsilon^2)$ we get

(5) Given $\varepsilon > 0$ there are M > 0 and a set $\mathbf{C}(\varepsilon)$ of atoms $C \in \mathcal{P}_M \mu (\cup \mathbf{C}(\varepsilon)) \ge 1 - \varepsilon$ with the following property: for any $m \ge 0$ there is a set $\beta_{M+m} \subset \mathcal{P}_{M+m}$, $\mu(\cup \beta_{M+m}) \ge 1 - \varepsilon$ s.t. if $B \in \beta_{M+m}$ and $\mu(B \cap f^{-m}C) > 0$ for some $C \in \mathbf{C}(\varepsilon)$ then for any $A \subset C$, $A \in \mathcal{P}(M+k)$, $k \ge 0$, $\mu(B \cap f^{-m}A) > 0$ and

$$\left|\frac{\mu(B\cap f^{-m}A)}{\mu(f^{-m}A)} - \frac{\mu(B)}{\mu(f^{-m}B)}\right| < \varepsilon \frac{\mu(B\cap f^{-m}A)}{\mu(f^{-m}A)}.$$

(6) It is easy to see from the proof of Lemma 3.3 that $M(\varepsilon)$ can be taken as $\mathcal{D} \log(1/\varepsilon)$ for some $\mathcal{D} > 0$.

We now look at the natural extension of (f, μ) .

Denote $A = \{0, a_0, a_1, \dots, 1\}$, $\Delta = \bigcup_{k,n \geq 0} f^{-k} f^n A$ and $\mathcal{G} = I - \Delta$. Then $\mu(\mathcal{G}) = 1$, $f(\mathcal{G}) = \mathcal{G}$ and if $z \in \mathcal{G}$ then $z = \bigcap_{n=0}^{\infty} f^{-n} P_n$, $P_n \in \mathcal{P}$, $n = 0, 1, \dots$, $\mathcal{P} = \{A_1, \dots, A_r\}$ for a unique sequence $\{\dots P_2 P_1 P_0\} = z_{-\infty}^0 \in \{A_1, \dots, A_r\}^{\mathbf{z}}$. Also $(fz)_{-\infty}^0 = \{\dots P_2 P_1\}$.

Define Ω by $\Omega = \{\omega \in \{1, \dots, r\}^T : \exists z_{\omega} = z \in \mathcal{G} \text{ s.t. } z_{-\infty}^0 = \{\dots P_{\omega_{-1}} P_{\omega_0}\}, \psi : \Omega \to \mathcal{G} \text{ by } \psi(\omega) = z_{\omega} \text{ and } \tilde{f} : \Omega \to \Omega \text{ by } (\tilde{f}\omega)_i = \omega_{i-1}. \psi \text{ is a one-to-one measurable map and } f\psi = \psi \tilde{f}. \text{ Let } \tilde{\mathcal{P}} = \psi^{-1}\mathcal{P}, \text{ then } \tilde{\mathcal{P}}_m^n = \bigvee_{k=m}^n \tilde{f}^{-k}\tilde{\mathcal{P}} = \psi^{-1}\mathcal{P}_m^n$ For $A \in \tilde{\mathcal{P}}_m^n$ define $\tilde{\mu}(A) = \mu(\psi A)$ and extend $\tilde{\mu}$ to an \tilde{f} -invariant measure on the σ -algebra $\tilde{\mathcal{B}}$ in Ω generated by the cylindric sets $A \in \tilde{\mathcal{P}}_m^n$, $0 \leq m \leq n < \infty$. Then ψ is an isomorphism between (f, μ) in I and $(\tilde{f}, \tilde{\mu})$ in Ω . So the natural extension of (f, μ) is that of $(\Omega, \tilde{\mathcal{B}}, \tilde{\mu}, \tilde{f})$ which we denote by $(X, \mathcal{B}, \bar{\mu}, \varphi)$. This means that $X \subset \{1, \dots, r\}^Z$ is a set of two-sided sequences $x = \{x_i\}_{i=-\infty}^\infty, \varphi : X \to X$ is the shift automorphism $(\varphi x)_i = x_{i-1}, \varphi(X) = X, \bar{\mu}$ is a φ -invariant measure on the σ -algebra \mathcal{B} in X, generated by cylindric sets and the map $\pi : x \to x_{-\infty}^0$ is a measurable map from X onto Ω s.t. \mathcal{B} is generated by $\pi^{-1}(\tilde{\mathcal{B}})$ and $\bar{\mu}(\pi^{-1}B) = \tilde{\mu}(B), B \in \tilde{\mathcal{B}}$. The partition $\alpha = \pi^{-1}\tilde{\mathcal{P}}$ is a generator for φ , let $\alpha_m^n = \bigvee_{k=m}^n \varphi^k \alpha$.

PROOF OF THEOREM 6. Remark (5) above says that $(X, \bar{\mu}, \varphi)$ has the following property:

Given $\varepsilon > 0$ there is $M = M(\varepsilon) > 0$ and a set P of atoms $x_{-M}^0 \in \alpha_{-M}^0$, $\bar{\mu}(P) \ge 1 - \varepsilon$ s.t. for any $m \ge 0$ there is a set Q_m of atoms $x_{-M}^m \in \alpha_{-M}^m$,

 $\bar{\mu}(Q_m) \ge 1 - \varepsilon$ s.t. if $x_{-M}^m \in Q_m$ and $x_{-M}^m \in x_{-M}^0 \subset P$ then for every $x_{-k}^0 \subset x_{-M}^0$, $k \ge M$ we have

$$\left| \frac{\bar{\mu} \left(\mathbf{x}_{-M}^{m} / \mathbf{x}_{-k}^{0} \right)}{\bar{\mu} \left(\mathbf{x}_{-M}^{m} / \mathbf{x}_{-M}^{0} \right)} - 1 \right| < \varepsilon.$$

Since this is true for every $x_{-k}^0 \subset x_{-M}^0 \in P$, $k \ge M$ it follows that if $x_{-M}^m \in Q_m$, $B \in P$ and $\bar{x}, \bar{\bar{x}} \in \alpha_{-\infty}^0 \cap B$ then $\bar{\mu}(x_{-M}^m | \bar{x}) > 0$ iff $\bar{\mu}(x_{-M}^m | \bar{x}) > 0$ and

$$\left|\frac{\mu\left(x_{-M}^{m}/\bar{x}\right)}{\mu\left(x_{-M}^{m}/\bar{x}\right)}-1\right|<\varepsilon.$$

Now let $Q = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} Q_m$. Then $\bar{\mu}(Q) = \lim_{n \to n} \bar{\mu}(\bigcup_{m=n}^{\infty} Q_m) \ge 1 - \varepsilon$ and Q is a set of atoms of α_{-M}^{∞} . Let $A \subset Q$, $\bar{\mu}(A) > 0$ be a set of atoms of α_{-M}^{∞} . Then for all $n, A \subset \bigcup_{m=n}^{\infty} Q_m$ and therefore there is a sequence $i_1 < i_2 < \cdots$ s.t. $A \subset Q_{i_j}$, $j = 1, 2, \cdots$ or sets $A_{i_j} \subset Q_{i_j}$ of atoms of $\alpha_{-M}^{i_j}$ s.t. $A_{i_1} \supset A_{i_2} \supset \cdots$ and $A = \bigcap_{j=1}^{\infty} A_{i_j}$. Since $\bar{\mu}(A \mid \bar{x}) = \lim_{j \to \infty} \bar{\mu}(A_{i_j}/\bar{x})$ we get from (3.5) that if $B \in P$, $\bar{x}, \bar{x} \in \alpha_{-\infty}^0 \cap B$ then $\bar{\mu}(A \mid \bar{x}) > 0$ iff $\bar{\mu}(A \mid \bar{x}) > 0$ and

$$\left|\frac{\bar{\mu}(A\mid\bar{x})}{\tilde{\mu}(A\mid\bar{x})}-1\right|<\varepsilon.$$

Finally we summarize that $(X, \bar{\mu}, \varphi)$ has the following property:

Given $\varepsilon > 0$ there are $M = M(\varepsilon) > 0$, a set P of atoms of $\alpha_{-\infty}^0$, $\bar{\mu}(P) \ge 1 - \varepsilon$ and a set Q of atoms of α_{-M}^{∞} , $\bar{\mu}(Q) \ge 1 - \varepsilon$ s.t. for all $x_{-M}^0 \in \alpha_{-M}^0$, all $\bar{x}, \bar{x} \in P \cap x_{-M}^0$ and any set $A \subset Q$ of atoms of α_{-M}^{∞} we have $\mu(A \mid \bar{x}) > 0$ iff $\mu(A \mid \bar{x}) > 0$ and

$$\left|\frac{\mu\left(A\mid\bar{x}\right)}{\mu\left(A\mid\bar{x}\right)}-1\right|<\varepsilon.$$

This is exactly the WM property.

PROOF OF THEOREM 8. We have $X \xrightarrow{\pi} \Omega \xrightarrow{\psi} I$ where the maps π, ψ are defined above. Define $G: X \to R^+$ by $G(x) = F(\psi \pi x)$. It is clear that $G \in \mathcal{F}_{\gamma}$ on X for some $\gamma > 0$. T' over $(X, \bar{\mu}, \varphi)$ built with G is the natural extension of S'. So we apply Theorems 3 and 5.

REFERENCES

- 1. D. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1967).
- 2. D. Anosov and Ya. Sinai, Some smooth ergodic systems, Russian Math. Surveys 22 (1967), 103-167.

- 3. R. Bowen, Bernoulli maps of the interval, Israel J. Math. 28 (1977), 161-168.
- 4. R. Bowen, Bernoulli equilibrium states for Axiom A diffeomorphisms, Math. Systems Theory 8 (1975), 289-294.
- 5. R. Bowen, On Axiom A Diffeomorphisms, CBMS Regional Conference at Fargo, Lecture Notes, 1978.
 - 6. L. Bunimovic, On a class of special flows, Math. USSR Izv. 8 (1974), 219-232.
- 7. B. Gurevič, Some conditions on existence of K-partitions for special flows, Trans. Moscow Math. Soc.
- 8. B. Gurevič, The structure of increasing decompositions for special flows. Theor. Probability Appl. 10 (1965), 627-645, MR. 35 #3034.
- 9. A. Lasota and G. Yorke, On the existence of invariant measures for piecewise monotomic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488.
 - 10. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130-141.
- 11. D. Ornstein, Imbedding Bernoulli shifts in flows, in Contributions to Ergodic Theory and Probability, Lecture Notes in Math., Springer, Berlin, 1970, pp. 178-218.
 - 12. D. Ornstein and B. Weiss, Geodesic flows are Bernoullian, Israel J. Math. 14 (1973), 184-197.
- 13. M. Ratner, Anosov flows with Gibbs measures are also Bernoullian, Israel J. Math. 17 (1974), 380-391.
- 14. V. A. Rohlin, New progress in the theory of measure preserving transformations, Russian Math. Surveys 15 (1960).
- 15. V. A. Rohlin and Ya. G. Sinai, Construction and properties of invariant measurable partitions, Soviet Math. Dokl. 2, #6 (1961), 1611-1614.
- 16. Ya. G. Sinai, Classical dynamical systems with countably multiple Lebesgue spectrum II, Amer. Math. Soc. Transl., Ser. 2, 68 (1968), 34-88.
 - 17. R. F. Williams, The structure of Lorenz attractors.
 - 18. S. Wong, Thesis, Berkeley, 1977.
 - 19. R. L. Adler, f-Expansions Revisited, Springer Lecture Notes 318, pp. 1-5.
- 20. J. Guckenheimer, A strange, strange attractor, Springer Lecture Notes in Appl. Math. Sci. 19 (1976), 368-391.
 - 21. J. Guckenheimer, Structural stability of the Lorenz attractors.
- 22. O. Lanford, An Introduction to the Lorenz System, 1976 Duke Turbulence Conference, Duke Univ. Math. Series 111 (1977).
 - 23. T. Li and J. A. Yorke, Ergodic transformations from an interval into itself, to appear.
- 24. W. Parry, On the β -expansion of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416.
- 25. D. Ruelle, Statistical mechanics and dynamical systems, Duke Univ. Math. Series 111 (1977).
- 26. M. Smorodinsky, β -automorphisms are Bernoulli shifts, Acta. Math. Acad. Sci. Hungar. 24 (1973), 273–278.
- 27. P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, to appear.
- 28. K. Wilkinson, Ergodic properties of a class of piecewise linear transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1974), 303-328.
 - 29. Ya. G. Sinai, Stochasticity of dynamical systems, to appear.
- 30. L. Buinmovic and Ya. G. Sinai, Appendix to Sinai's paper, "Stochasticity of dynamical systems".

DEPARTMENT OF MATHEMATICS

University of California

BERKELEY, CALIF. 94720 USA